437 research outputs found

    Osteoblasts Display Different Responsiveness to TRAIL-Induced Apoptosis During Their Differentiation Process

    Get PDF
    Apoptosis can occur throughout the life span of osteoblasts (OBs), beginning from the early stages of differentiation and continuing throughout all stages of their working life. Here, we investigated the effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal human OBs showing for the first time that the expression of TRAIL receptors is modulated during OB differentiation. In particular, the TRAIL receptor ratio was in favor of the deaths because of the low expression of DcR2 in undifferentiated OBs, differently it was shifted toward the decoys in differentiated ones. Undifferentiated OBs treated with TRAIL showed reduced cell viability, whereas differentiated OBs displayed TRAIL resistance. The OB sensitiveness to TRAIL was due to the up-regulation of DR5 and the down-regulation of DcR2. The main death receptor involved in TRAIL-reduced OB viability was DR5 as demonstrated by the rescue of cell viability observed in the presence of anti-DR5 neutralizing antibody. Besides the ratio of TRAIL receptors, the sensitivity of undifferentiated OBs to TRAIL-cytotoxic effect was also associated with low mRNA levels of intracellular anti-apoptotic proteins, such as cFLIP, the activation of caspase-8 and -3, as well as the DNA fragmentation. This study suggests that apoptotic effect exerted by TRAIL/TRAIL-receptor system on normal human OB is strictly dependent upon cell differentiation status

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    Get PDF
    BACKGROUND: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS: Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS: Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer

    Biomarkers of clinical benefit for anti-epidermal growth factor receptor agents in patients with non-small-cell lung cancer

    Get PDF
    Non-small-cell lung cancer (NSCLC) remains by far the major cause of cancer-related death in the Western world in both men and women. The majority of patients will be diagnosed with metastatic disease, and chemotherapy doublets remain the cornerstone of treatment for these patients. However, chemotherapy has a minimal impact on long-term survival and prognosis remains poor for these patients. Further improvement in treatment is likely to require incorporation of novel targeted therapies. Among these agents, inhibitors of the epidermal growth factor receptor (EGFR) have demonstrated significant activity in the first-, second- or third-line treatment of NSCLC. The purpose of current paper is to present the evidence for using several proposed molecular biomarkers as a tool for selection of NSCLC patients for anti-EGFR treatment. According to current data, EGFR mutation status appears to be the strongest predictor for the selection of NSCLC patients to first-line treatment with EGFR tyrosine kinase inhibitors vs chemotherapy. Use of other biomarkers remains investigational

    Pooled peptides from HER-2/neu-overexpressing primary ovarian tumours induce CTL with potent antitumour responses in vitro and in vivo

    Get PDF
    Unfractionated peptides (MW: up to 10 kDa), derived from HLA-A2.1 positive (+) HER-2/neu-overexpressing primary tumour cell acid cell extracts (ACE), were successfully used to generate in vitro cytotoxic T lymphocytes (CTL). Primary tumour cells were collected from peritoneal malignant effusions of patients with ovarian cancer. Acid cell extracts-induced CTL specifically lysed in an HLA-A2-restricted manner HER-2/neu+ autologous primary tumour cells as well as HER-2/neu+ tumour cell lines. In addition, adoptive transfer of such CTL significantly prolonged the survival of SCID mice xenografted with HLA-A2.1+, HER-2/neu+ human breast and ovarian tumour cell lines. Acid cell extracts collected from HLA-A2.1+ HER-2/neu negative (−) primary ovarian tumours induced HLA-A2.1-restricted CTL with weak in vitro and in vivo antitumour capacity, suggesting that HER-2/neu peptides within ACE from HER-2/neu-overexpressing primary ovarian tumour cells are immunodominant. The results presented herein serve as a rationale for the initiation of vaccination studies in patients with HER-2/neu-overexpressing ovarian tumours utilising autologous tumour-derived ACE

    Respiratory Dendritic Cell Subsets Differ in Their Capacity to Support the Induction of Virus-Specific Cytotoxic CD8+ T Cell Responses

    Get PDF
    Dendritic cells located at the body surfaces, e.g. skin, respiratory and gastrointestinal tract, play an essential role in the induction of adaptive immune responses to pathogens and inert antigens present at these surfaces. In the respiratory tract, multiple subsets of dendritic cells (RDC) have been identified in both the normal and inflamed lungs. While the importance of RDC in antigen transport from the inflamed or infected respiratory tract to the lymph nodes draining this site is well recognized, the contribution of individual RDC subsets to this process and the precise role of migrant RDC within the lymph nodes in antigen presentation to T cells is not clear. In this report, we demonstrate that two distinct subsets of migrant RDC - exhibiting the CD103+ and CD11bhi phenotype, respectively - are the primary DC presenting antigen to naïve CD4+ and CD8+ T lymphocytes in the draining nodes in response to respiratory influenza virus infection. Furthermore, the migrant CD103+ RDC subset preferentially drives efficient proliferation and differentiation of naive CD8+ T cells responding to infection into effector cells, and only the CD103+ RDC subset can present to naïve CD8+ T cells non-infectious viral vaccine introduced into the respiratory tract. These results identify CD103+ and CD11bhi RDC as critical regulators of the adaptive immune response to respiratory tract infection and potential targets in the design of mucosal vaccines

    Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    Get PDF
    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC

    Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    Get PDF
    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination

    Immunocytochemical assessment of bone marrow aspirates for monitoring response to chemotherapy in small-cell lung cancer patients

    Get PDF
    Recent reports have suggested that tumour cell immunodetection in bone marrow of small-cell lung cancer patients is by far more frequent than found cytohistologically and may have clinical relevance. This study evaluates primarily the efficacy of chemotherapy as method of in vivo purging, but also the relationship of marrow involvement with survival. A total of 112 bone marrow aspirates from 30 chemo-naïve patients were stained twice using anti-NCAM antibodies, first at diagnosis and then after chemotherapy (24 patients) or at disease progression (six patients). Marrow contamination was associated with lower survival (P = 0.002), and was also detected in 7/17 patients conventionally staged as having limited disease. At multivariate analysis, marrow involvement was an independent factor of unfavourable prognosis (P = 0.033). The amount of tumour contamination, before and after chemotherapy, remained unchanged also in responders and even in the subset of patients with apparent limited disease. Following chemotherapy, bone marrow became tumour negative only in 25% of initially positive responders and in none of non-responders. Our results indicate that (i) chemotherapy is not effective in purging bone marrow even in chemo-responsive patients and (ii) a subset of patients with limited disease and negative bone marrow aspirates might have a more favourable prognosis. © 1999 Cancer Research Campaig
    corecore